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Introduction -

Cellulose characteristics very much depending on hierarchical structure design that spans nanoscale to macroscopic
dimensions as illustrated in Figure 1. It possesses several attributes such as a fine cross section, the ability to absorb
moisture, high strength and durability, high thermal stability, good biocompatibility, relatively low cost and low
density yet good mechanical properties (Roy et al., 2009}. However, cellulose fibres properties are strongly
influenced by many factors, which differ from different parts of a plant as well as from different plants (Siquera,
Bras, & Dufresne, 2010). Due to this inuniformity and some of cellulose natural characteristics (i.e high
hydrophilicity, poor dimensional stability, easily attack by insects and fungi), its promotes endless efforts esspecially
by scientist to improve and modify drawbacks that associate with cellulose in original form. The improvement and
modification of cellulose can be done physically and/or chemically depending on properties that desired to be

improved.
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Figure 1 : iflustration of cefiulose hierachical structure

The hierarchical structure design of cellulose fibres
exhibit uniqueness to it properties. The mechanical
performance of cellulose fibre increase tremendously as
it is downscaled from macro to nano level, As illustrated
in Figure 2, the modulus of wood in original form is
about 10Gpa. It increase to 40GPa after separated and
downsize into pulps and further to 70 GPa at microfibrill
form and 250 Gpa as in crystalite (nano) form {Silva et al,
2015). In fact, at the nanoscale level, some material
properties are affected by the laws of atomic physics
rather than behaving as traditional bulk materials do.
Their extremely small features size is of the same scale
as the critical size for some physical phenomena, such as
light {(Brinchi, et al., 2013}, This makes cellulose fibre at
nanoscle open a wide range of possible properties to be
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Figure 2 : Correlation between structure, process,
component and modulus

discovered. Generally, the size of nanocellulose fibres
are in the range from 2 to 20 nm in diameter, and a
length of more than a few micrometers.

Cellulose structure and arrangement »

Cellulose molecular structure

The cellulose molecule is a linear homopolysacchride
that composed of D-anhydroglucopyranase units linked
together by B-1,4-glycoside bonds. The molecular
structure of cellulose shown in Figure 3.
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Figure 3 : Structure of cellilose with corbon atom numbering with
hemiacetal ot the reducing end and free hydroxyl group at C4 as non-reducing end

As illustrated in Figure 3, cellulose is 1,4-linked glucans
that has one reducing end containing an unsubstituted
hemiacetal, and one non-reducing end containing an
additional hydroxyl group at C4. Each monomer
attached with three hydroxyl groups where C6-OH act as
primary group and C1-OH and C2-OH as secondary
group (Wertz, Bédué, & Mercier, 2010}. These hydroxy!
groups will determine the cellulose reactivity. Generally,
the reactivity of these hydroxyl groups can be expressed
as OH-C6 >> OH—C2 > OH—C3 (Roy et al., 2009). Besides,
these groups are resposible for the formation of strong
hydrogen bonding inter- and intra-cellulose molecule
chain (Figure 4)}. The hydrogen bonding will attributes to
cellulose important properties esspecially its {i)
multi-scale microfibrillated structure, (ii) hierarchical
organization [(crystalline vs. amorphous regions), and
(iii} highly cohesive nature (with a glass transition
temperature higher than its degradation temperature
{Lavoine et al., 2012},
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Figure 4 : Hydrogen bonding In cellulose molecules
{a) intramolecutar; (b) intermolecular

Cellulose polymerization and packing assemblies

The degree of polymerization of native cellulose from
various sources is ranging from 1000 to 30,000, which
corresponds to chain lengths from 500 to 15000 nm
{loelovich, 2008). As mentiohed earlier, cellulose is a
hierichal structure. It has a complex, multi-level from
macro to nhano-scale architecture. It assemble from
packing bundles of elementary fibrils that have size 3-15
nm in diameter and length about 1um. These packing

assemblies of elementary fibrils consist of 60-80% of
ordered domain and remaining as disordered domain.
Ordered domalns also called as crystalline region
contains highly ordered and very minimal defect
crystallite chalns having length in range of 50-150 nm.
Meanwhile, disordered domain which commonly
known as armophous region is 25-50 nm (loelovich,
2008).
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Figure 5: Hlustration on the microstructure of the
microfibril a) cross-section view of microfibril that
comprise efementary fibrils bundle b) single elementary
fibril ¢c) amorphous region/defects due to distorted
by internal strain in the fibre and proceed to tilt and twist
d) side-view of microfibrils and elementary fibrif bundles

The amorphous regions are scattered along the
microfibrils. One of well accepted theory of how
amorphous region occurs was due to microfibrils are
distorted by internal strain in the fibre and proceed to
tilt and twist and producing chain dislocations/defects
on segments along the elementary fibril packings as
illustrated in Figure 5 {Habibi et al., 2010}.

Celiulose polymorph and packing arrangement

There are six crystalline polymorphs of pure cellulose
with different packing arrangements ; cellulose |, (1, Il
Iln Vi and IV {QYsullivan, 1997). Cellulose | also called as
native cellulose because its the most cellulose
polymorphs that found in nature. Naturally, within the
same microfibril, cellulose | coexists in two crystal phase
suballomorphs, cellulose la and cellulose IB. Cellulose I
is richly found in algae and bacterial cellulose, whilst
cellulose IB dominantly in higher plant and tunicate
(Wertz et al., 2010). Phase la has a triclinic unit cell
containing one chain, whereas cellulose IB is



represented by a monoclinic unit cell containing two parallel chains {Nishiyama et al,,

2002). These were by

measured it vectors (a, b and c} and vectors angle. Thus, its attributes to displacement of adjacent chains of
cellulose molecular unit arrangement whether it diagonally shifted for cellulose la or a staggered for cellulose IB.
{Wertz et al., 2010). Figure & shows schematic drawing and measurement of the cellulose unit coordinate systems

for cellulose la and IB.

it

cellulas [z

Source : Wertz et o, 2010
Figure 6 : Celfulose le (triclinic) and I8 {monociinic)
coordinate systems (i) Cellulose unit orientation;
(ii). Measurement of vectors and angle; (iii) View of five
cellulose chains viewed orientation and arrangement.
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Figure 7 : Transformation of cellulose into its various
polymorphs
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